# **Viscosity Standards**

Brookfield Viscosity Standards provide a convenient, reliable way to verify the calibration of your Brookfield Laboratory Viscometer/Rheometer. Brookfield Viscosity Standards are

## **Silicone Viscosity Standards**

These fluids are most commonly used to verify calibration of Brookfield Viscometers/Rheometers.

Accuracy: ±1% of viscosity value Excellent temperature stability

Recommended for use with Brookfield and most other rotational viscometers

Most economical

Special viscosity values and temperature calibrations available upon request

## VisCal Kit

The Brookfield VisCal Kit provides all the necessary items to verify calibration of your Viscometer/Rheometer. Includes Brookfield 600mL Beaker, 1 pint of Silicone Viscosity Standard, Dispersing Bottle for cleanup and Trapper Cleaning Agent.\* \*Trapper Cleaning Agent available only in shipments within the USA

## Plastic VisCal Kit

The Brookfield Plastic VisCal Kit provides all the necessary items to verify calibration of your Viscometer/ Rheometer in a glass-free environment. Includes Brookfield 600mL Plastic Beaker, 1000ml of Silicone Viscosity Standard (5-12,500 cP) in a plastic bottle and a Brookfield-designed metal lid for anchoring beaker in the temperature bath.



Newtonian, and they are available as either silicone or oil. Silicone fluids are less temperature sensitive than oil fluids. Note: Brookfield recommends that all fluids be replaced annually

### General Purpose Silicone Fluids

| Brookfield<br>Part # | Nominal Viscosity<br>cP (mPa∙s) | Temp °C |
|----------------------|---------------------------------|---------|
| 5 cps                | 5                               | 25.0°C  |
| 10 cps               | 10                              | 25.0°C  |
| 50 cps               | 50                              | 25.0°C  |
| 100 cps              | 100                             | 25.0°C  |
| 500 cps              | 500                             | 25.0°C  |
| 1000 cps             | 1,000                           | 25.0°C  |
| 5000 cps             | 5,000                           | 25.0°C  |
| 12500 cps            | 12,500                          | 25.0°C  |
| 30000 cps            | 30,000                          | 25.0°C  |
| 60000 cps            | 60,000                          | 25.0°C  |
| 100000cps            | 100,000                         | 25.0°C  |

| High Temperature Silicone Fluids |                                 |         |         |  |  |
|----------------------------------|---------------------------------|---------|---------|--|--|
| Brookfield<br>Part #             | Nominal Viscosity<br>cP (mPa•s) | Temp °C | Temp °F |  |  |
| HT30000                          | 30,000                          | 25.0°C  | 77°F    |  |  |
|                                  | 9,000                           | 93.3°C  | 200°F   |  |  |
|                                  | 4,500                           | 149.0°C | 300°F   |  |  |
| HT60000                          | 60,000                          | 25.0°C  | 77°F    |  |  |
|                                  | 18,000                          | 93.3°C  | 200°F   |  |  |
|                                  | 9,000                           | 149.0°C | 300°F   |  |  |
| HT100000                         | 100,000                         | 25.0°C  | 77°F    |  |  |
|                                  | 30,000                          | 93.3°C  | 200°F   |  |  |
|                                  | 15,000                          | 149.0°C | 300°F   |  |  |

## **Special Order Silicone Fluids**

For our customers needing a nonstandard viscosity or temperature range, our silicone fluids can be modified to meet most requirements.

#### VISCOSITY BLENDS CALIBRATED AT 25°C (77°F)

- Minimum: 5 cP (mPa•s)
- Maximum: 60,000 cP (mPa•s)
- Blends will be within ±2% of requested value

#### **TEMPERATURE CALIBRATIONS**

- Minimum: 10°C (50°F)
- Maximum: 80°C (176°F)
- Minimum temperature increment: 2°C



## **Oil Viscosity Standards**

These fluids are used for specific instruments using cone/plate or Krebs spindle geometry. Also, certain industries may require use of oil standards.

Accuracy:  $\pm 1\%$  of viscosity value

Appropriate for use at shear rates greater than 500 sec<sup>-1</sup>

Recommended for use with cone/plate Viscometers at viscosities above 5,000 cP

Recommended for Brookfield CAP series and KU-2 Viscometers and RST Rheometers

Brookfield oil viscosity standards are hydrocarbon based, either mineral oil or polybutenes



#### Note: Other oil fluids are available - call for details

Brookfield Viscosity Standards are accurate to ±1% of the stated viscosity and are certified by methods traceable to the United States National Institute of Standards and Technology (NIST). The selection of one or two fluids will normally provide sufficient measurement points to verify calibration of your instrument. All fluids are supplied in 1/2 liter (1 pint) containers complete with a certificate of calibration. CAP Oil Fluids are supplied in 150 mL (4 oz) containers

#### CAP Viscometer Oil Fluids For calibrating CAP Series cones each spindle has its own fluid

|                 | HIGH TORQUE CAP<br>Low Temp 25°C High Temp 60°C |        |                                                                    | mp 60°C | LOW TORQUE CAP<br>Low Temp 25°C High Temp 60°C |       |                                           | emp 60°C |
|-----------------|-------------------------------------------------|--------|--------------------------------------------------------------------|---------|------------------------------------------------|-------|-------------------------------------------|----------|
| Cone<br>Spindle |                                                 |        | eld Viscosity Brookfield Viscosity<br>cP (mPa•s) Part # cP (mPa•s) |         | Brookfield Viscosity<br>Part # cP (mPa•s)      |       | Brookfield Viscosity<br>Part # cP (mPa•s) |          |
| 1               | CAP1L                                           | 89     | CAP1H                                                              | 89      | CAPOL                                          | 57    | CAPOH                                     | 57       |
| 2               | CAP2L                                           | 177    | CAP2H                                                              | 177     | CAP1L                                          | 89    | CAP1H                                     | 89       |
| 3               | <b>CAP3L</b>                                    | 354    | <b>CAP3H</b>                                                       | 354     | CAP2L                                          | 177   | CAP2H                                     | 177      |
| 4               | CAP4L                                           | 708    | CAP4H                                                              | 708     | <b>CAP3L</b>                                   | 354   | <b>CAP3H</b>                              | 354      |
| 5               | CAP5L                                           | 1,417  | CAP5H                                                              | 1,417   | CAP4L                                          | 708   | CAP4H                                     | 708      |
| 6               | CAP6L                                           | 3,542  | CAP6H                                                              | 3,542   | CAP5L                                          | 1,417 | CAP5H                                     | 1,417    |
| 7               | CAP7L                                           | 1,328  | CAP7H                                                              | 1,328   | CAP1L                                          | 89    | CAP1H                                     | 89       |
| 8               | CAP8L                                           | 5,313  | CAP8H                                                              | 5,313   | <b>CAP3L</b>                                   | 354   | <b>CAP3H</b>                              | 354      |
| 9               | CAP9L                                           | 21,250 | CAP9H                                                              | 21,250  | CAP5L                                          | 1,417 | CAP5H                                     | 1,417    |
| 10              | CAP10L                                          | 236    | CAP10H                                                             | 236     | CAP2L                                          | 177   | CAP2H                                     | 177      |

#### HOW TO SELECT A CAP FLUID

- Determine which viscometer is being used: High Torque or Low Torque.
- Determine which temperature model is being used: Low Temperature (5°C-75°C) or High Temperature (50°C-235°C)
- Determine which cone is being used.

| Krebs Viscometer Oil Fluids |                                  |         |  |  |  |
|-----------------------------|----------------------------------|---------|--|--|--|
| Brookfield<br>Part #        | Nominal Viscosity<br>Krebs Units | Temp °C |  |  |  |
| KU61                        | 61                               | 25.0°C  |  |  |  |
| KU73                        | 73                               | 25.0°C  |  |  |  |
| KU87                        | 87                               | 25.0°C  |  |  |  |
| KU99                        | 99                               | 25.0°C  |  |  |  |
| KU106                       | 106                              | 25.0°C  |  |  |  |

| General Purpose Oil Fluids |                                 |         |  |  |  |
|----------------------------|---------------------------------|---------|--|--|--|
| Brookfield<br>Part #       | Nominal Viscosity<br>cP (mPa•s) | Temp °C |  |  |  |
| B29                        | 29                              | 25.0°C  |  |  |  |
| B200                       | 200                             | 25.0°C  |  |  |  |
| B400                       | 400                             | 25.0°C  |  |  |  |
| B600                       | 600                             | 25.0°C  |  |  |  |
| B1060                      | 1,060                           | 25.0°C  |  |  |  |
| B2000                      | 2,000                           | 25.0°C  |  |  |  |
| B10200                     | 10,200                          | 25.0°C  |  |  |  |
| B21000                     | 21,000                          | 25.0°C  |  |  |  |
| B73000                     | 73,000                          | 25.0°C  |  |  |  |
| B200000                    | 200,000                         | 25.0°C  |  |  |  |
| B360000                    | 360,000                         | 25.0°C  |  |  |  |
|                            |                                 |         |  |  |  |

| <b>RST Rheometer Oil Fluids</b> (calibrated at 25.0°C) |     |                      |                                 | RST Rheometer Oil Fluids (calibrated at 25.0 |                      |                              |
|--------------------------------------------------------|-----|----------------------|---------------------------------|----------------------------------------------|----------------------|------------------------------|
| Cone<br>Spind                                          | le  | Brookfield<br>Part # | Nominal Viscosity<br>cP (mPa•s) | Coaxial<br>Spindle                           | Brookfield<br>Part # | Nominal Viscos<br>cP (mPa•s) |
| RCT-2                                                  | 5-1 | B41000               | 41,000                          | CCT-DG                                       | B200                 | 200                          |
| RCT-2                                                  | 5-2 | B73000               | 73,000                          | CCT-40                                       | B2000                | 2,000                        |
| RCT-5                                                  | 0-1 | B10200               | 10,200                          | CCT-25                                       | B10200               | 10,200                       |
| RCT-5                                                  | 0-2 | B21000               | 21,000                          | CCT-14                                       | B73000               | 73,000                       |
| RCT-7                                                  | 5-1 | B4900                | 4,900                           | CCT-8                                        | B360000              | 360,000                      |
| RCT-7                                                  | 5-2 | B10200               | 10,200                          |                                              |                      |                              |

| (ST KITEOITIELET OTT FTUTUS (calibrateu al 25.0 c) |                      |                                 |  |  |  |  |
|----------------------------------------------------|----------------------|---------------------------------|--|--|--|--|
| Coaxial<br>Spindle                                 | Brookfield<br>Part # | Nominal Viscosity<br>cP (mPa•s) |  |  |  |  |
| CT-DG                                              | B200                 | 200                             |  |  |  |  |
| CT-40                                              | B2000                | 2,000                           |  |  |  |  |
| CT-25                                              | B10200               | 10,200                          |  |  |  |  |
| CT-14                                              | B73000               | 73,000                          |  |  |  |  |
| CT-8                                               | B360000              | 360,000                         |  |  |  |  |
|                                                    |                      |                                 |  |  |  |  |